Hydratase activities of green fluorescent protein tagged human multifunctional enzyme type 2 hydratase domain and its variants.
نویسندگان
چکیده
In order to clarify the physiological significance of stereospecificities of peroxisomal multifunctional enzyme (MFE) type 1 (MFE1) and MFE2, we developed a chiral separation analysis for 3-hydroxyacyl-CoA using high performance liquid chromatography (HPLC) equipped with a chiral separation column. To demonstrate the utility of this technique, we cloned the hydratase domain from wild-type human MFE2 hydratase (MFE2Hwt) and expressed it as a GFP-tagged protein (GFP-MFE2Hwt) in Escherichia coli (E. coli). GFP-MFE2H was purified by diethylaminoethyl (DEAE) Sephacel from an E. coli sonication solution. As anticipated, we observed the formation of 3R-hydroxyhexadecanoyl-CoA (3R-OH-16-CoA) on the HPLC chromatogram after incubating trans-2-enoyl-CoA (16eno-CoA) with GFP-MFE2Hwt. GFP-MFE2Hwt was readily purifiable and could be assayed because of its traceability. We used site-directed mutagenesis to construct GFP-MFE2H variants corresponding to 17 reported MFE2H missense mutations and measured their hydratase activities using our HPLC method. Hydratase activity was completely lost or markedly decreased in the same variants corresponding to MFE2H mutations in patients with D-bifunctional protein (DBP) deficiency type II. On the other hand, the nonpathological variants did not markedly affect hydratase activity.
منابع مشابه
Substrate specificities of peroxisomal members of short-chain alcohol dehydrogenase superfamily: expression and characterization of dehydrogenase part of Candida tropicalis multifunctional enzyme.
In addition to several other enzymes, the short-chain alcohol dehydrogenase superfamily includes a group of peroxisomal multifunctional enzymes involved in fatty acid and cholesterol side-chain beta-oxidation. Mammalian peroxisomal multifunctional enzyme type 2 (perMFE-2) is a 2-enoyl-CoA hydratase-2/(R)-3-hydroxyacyl-CoA dehydrogenase. As has been shown previously, perMFE-2 hydrates (24E)-3alp...
متن کاملStructure-function Studies of the Mammalian Peroxisomal Multifunctional Enzyme Type 2 (mfe-2)
Mammalian peroxisomes contain two parallel multifunctional enzymes (MFE), MFE type 1 and MFE type 2 (MFE-2), which are responsible for the degradation of fatty acids. They both catalyze the second and third reactions of the β-oxidation pathway, but through reciprocal stereochemical courses. MFE-2 possesses (2E)-enoyl-CoA hydratase-2 and (3R)-hydroxyacyl-CoA dehydrogenase activities. In addition...
متن کاملOrganization of the multifunctional enzyme type 1: interaction between N- and C-terminal domains is required for the hydratase-1/isomerase activity.
Rat peroxisomal multifunctional enzyme type 1 (perMFE-1) is a monomeric protein of beta-oxidation. We have defined five functional domains (A, B, C, D and E) in the perMFE-1 based on comparison of the amino acid sequence with homologous proteins from databases and structural data of the hydratase-1/isomerases (H1/I) and (3 S )-hydroxyacyl-CoA dehydrogenases (HAD). Domain A (residues 1-190) comp...
متن کاملStructural enzymology comparisons of multifunctional enzyme, type‐1 (MFE1): the flexibility of its dehydrogenase part
Multifunctional enzyme, type-1 (MFE1) is a monomeric enzyme with a 2E-enoyl-CoA hydratase and a 3S-hydroxyacyl-CoA dehydrogenase (HAD) active site. Enzyme kinetic data of rat peroxisomal MFE1 show that the catalytic efficiencies for converting the short-chain substrate 2E-butenoyl-CoA into acetoacetyl-CoA are much lower when compared with those of the homologous monofunctional enzymes. The mode...
متن کاملPeroxisomal multifunctional enzyme of beta-oxidation metabolizing D-3-hydroxyacyl-CoA esters in rat liver: molecular cloning, expression and characterization.
In the present study we have cloned and characterized a novel rat peroxisomal multifunctional enzyme (MFE) named perMFE-II. The purified 2-enoyl-CoA hydratase 2 with an M(r) of 31500 from rat liver [Malila, Siivari, Mäkelä, Jalonen, Latipää, Kunau and Hiltunen (1993) J. Biol. Chem. 268, 21578-21585] was subjected to tryptic fragmentation and the resulting peptides were isolated and sequenced. S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of oleo science
دوره 61 8 شماره
صفحات -
تاریخ انتشار 2012